[Prabha, 2(11): November, 2013] ISSN: 2277-9655

Impact Factor: 1.852

=+ JESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
Reducing Runtime of RSA Processors Based On High-Radix Montgomery

Multipliers
Prabha N.
nprabhal234@gmail.com

Abstract
Depends on various requirements the paper presgntptimized Rives—Shami—Adleman (RSA)
processor which satisfies circuit area, operatimgtwe also introduces 3 multiplier based data patng differen
intermediate data forms: 1) single form,semicarry-save form, and 3) casgve form, and combined them wit
wide variety of arithmetic components. A total @f22datapaths for 10-bitRSA processors were obtained for e
radix. We can reduce the RSA runtime up to 0.24kssa result, the fasst design can perform the RSA operat

in less than 1.0 ms.

Keywords: ASIC implementation, hi¢-radix Montgomery multiplication, RSA.

I ntroduction
The mathematical details of the algorithm u
in obtaining the public and private keys are avddaat
the RSA Website. Briefly, the algorithm involve
multiplying two large prime numbers (a prime numts
a number divisible only by that number and 1)
through additional operations deriving a set of
numbers that constitutes the public key and ancgbt
that is the private key. Once the keys have
developed, the original prime numbers are no lo
important and can be discarded. Both the publictas
private keys are needed for encryption /decryption
only the owner of a private key ever needs tow it.
Using the RSA system, the private key never needs
sent across the Internet. The private key is use
decrypt text that has been encrypted with the puidyy.
Thus, if | send you a message, | can find out yublic
key (but not your privatekey) from a centre
administrator and encrypt a message to you using
public key. When you receive it, you decrypt itlwitour
private key. In addition to encrypting messagesictv
ensures privacy), you can authenticate yourseffieo(sc
| know tha it is really you who sent the message)
using your private key to encrypt a digital cectfie.
When | receive it, | can use your public key torgptit.
A table might help us remember this.

Alice)

Fig 1.0 RSA Block Diagram

RSA is an Internet encryption and
authentication system that uses algorithm developed
in 1977 by Ron Rivest, Adi Shamir, and Leon
Adleman. The RSA algorithm is the most commc
used encryption and authentication algorithm an
included as part of the Weddsowses from Microsoft and
Netscape. It's also part of LotNotes, Intuit's Quicken,
and many other products. The encryption syster
owned by RSA Security. The company licenses
algorithm technologies and also sells developmést
The technologies are part of exig or proposed Web,
Internet, and computing standaA single application of
the Montgomery algorithm (henceforth referred toa:
"Montgomery step") is faster than a "naive" modi
multiplication:

c=axb (modn).
Because numbers have to be converted to and fr
paricular form suitable for performing the Montgome
step, a single modular multiplication performedngsa
Montgomery step is actually slightly less efficiehan a
"naive" one. However, modular exponentiation car
implemented as a sequence of Montgcy steps, with
conversion only required once at the start and andtlee
end of the sequence. In this case the greater sjabd
Montgomery steps far outweighs the need for theat
conversions. Working witm-digit numbers to basd, a
Montgomery step calculates

axb+d (mﬂd T). The basd is typically

2 for microelectronic applications or®? or 2* for
software applications. For the purpose of expasitive
shall illustrate withd = 10 anch = 4.
To calculate 0472 & + 10000:

1. Zero the accumulator.

http: // www.ijesrt.confC)l nternational Journal of Engineering Sciences & Research Technology
[3214-3218]

[Prabha, 2(11): November, 2013]

2. Starting from the last digit; adda2to the
accumulator.

Shift the accumulator one place to the right
(thus dividing by 10).

Add 7a to the accumulator.

Shift the accumulator one place to the right.
Add 4a to the accumulator.

Shift the accumulator one place to the right.
Add 0a to the accumulator.

Shift the accumulator one place to the right.

It is easy to see that the result is 0.0472,>as
required. To turn this into a modular operationhwét
modulusr, add, immediately before each shift, whatever
multiple of r is needed to make the value in the
accumulator a multiple of 10. The result will bathhe
final value in the accumulator will be an integemn¢e
only multiples of 10 have ever been divided by aaj
equivalent (modula) to 472 xa + 10000. Finding the
appropriate multiple of is a simple operation of single-
digit arithmetic. When working to base 2, it isvial to
calculate: if the value in the accumulator is evire
multiple is 0 (nothing needs to be added); if théue in
the accumulator is odd, the multiple isrlngeds to be
added). The Montgomery step is faster than the oaksth
of "naive" modular arithmetic because the decigero
what multiple ofr to add is taken purely on the basis of
the least significant digit of the accumulator. § hllows
the use of carry-save adders, which are much fésher
the conventional kind but are not immediately atue
give accurate values for the more significant digit the
result. Working with n-digit numbers to baseal, a
Montgomery step

calculate! X b+ dn {mﬂd T) . The baskis

typically 2 for microelectronic applications of*2r #*

for software applications. For the purpose of exjog

we shall illustrate withd = 10 andn = 4.To turn this into

a modular operation with a modulgsadd, immediately
before each shift, whatever multiple ofis needed to
make the value in the accumulator a multiple of Tioe
result will be that the final value in the accumatawill

be an integer (since only multiples of 10 have éesn
divided by 10) and equivalent (modulpto 472 xa +
10000. Finding the appropriate multiple rofs a simple
operation of single-digit arithmetic. When working
base 2, it is trivial to calculate: if the value the
accumulator is even, the multiple is 0 (nothingdse®

be added); if the value in the accumulator is dithe,
multiple is 1 ¢ needs to be added). The Montgomery
step is faster than the methods of "naive" modular
arithmetic because the decision as to what multble

to add is taken purely on the basis of the leagtifstant
digit of the accumulator. This allows the use ofrga
save adders, which are much faster than the caowaht

w

©Co~NOA

ISSN: 2277-9655
Impact Factor: 1.852

kind but are not immediately able to give accukatiies
for the more significant digits of the result.The
encryption/decryption process usually requires rgela
amount ofarithmetic operations with very large apeis.
In particular,Rivest—Shamir—Adleman (RSA)
cryptosystem [1] usually performsmodular
exponentiation using operands longer than 1000bits.
Modular exponentiation is performed by repeating
modularmultiplication and squaring operations, émas
optimization ofmodular multiplication is essentiai
order to achieve high-performance RSA cryptosystem
designs. The Montgomery multiplication algorithni,[2
which does not require trial division, is widelyeassfor
practical hardware and software implementations
because of its high speed capability.Many omputatio
techniques and hardware architectureshave been
proposed for Montgomery multiplication [3]—-[11].
Among them, the radix-2 algorithms proposed indB{l
[4] areprimarily implemented with long -bit addets
scan the -bitoperand bit-by-bit in a straightforavar
manner. Hardware architectureshave large fan-out
signals and large wire delays for longoperands.s&he
drawbacks can be reduced by systolic array
architectures[6], [7] with multiple operation units
However, these architectures are usually tailored f
fixed-precision computations and cannot respond
flexibly to changes in operand size. To deal with
variable-length data, a radix-2 architecture wasppsed
[8]-[10] in which a -bit operand is divided intoitwvord
blocks, and -bit addition is performed by repeatyt
addition times. These radix-2 architectures aretequi
simple, but have difficulty in improving the
performances of circuit area and efficiency. A highdix
architecture using a 64-bit 64-bitmultiplier wa®posed
in [11] to achieve higher circuit efficiency.

Interface |

MSB Key Input . Data Input
LSB - o -
Key Shift (k-bit Shift Register)
Memory >
Address &
Counter Generator g i
T 1| Memory!l Memory0 i
" Level-3 Read! z VX’ LN W1
[RSA / RSA-CRT | Memories
— (Register Files)
Level-2 * Write i i 7
modexp] Yy
¥ L-to-R binary method (RSA1)/ Zj X Iy Y 1y
Squ.-mult. exp. method (RSA2) Contro Multiplication Block
Level-1 ! ™ Type-1/ Type-11 / Type-III
montmult, pre- and post-process,
modadd, modsub, modmult, Zj-1
modulo, inv { P
Sequencer Block

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3214-3218]

[Prabha, 2(11): November, 2013]

Fig 1.1 RSA Processor architecture

The performance of such a multiplier-based
architecture depends heavily on the datapath smeict
and varies with the structure of the arithmetic
components, but previous papers have focused on
designing their own architectures. These architestare
optimized for some design parameters, such asside a
speed, while the most suitable design point in tarakc
use varies depending on the application and the use
quirements.Therefore, in order to provide the ldesign
which satisfies these requirements, a systematidyst
considering the entire process of design from the
datapath architecture level to the arithmetic-congm
level is indispensable from a practicalstandpointife
other hand, cryptanalysis based on side-channel
information is a major concern for hardware designe
When a cryptographic module performs encryption or
decryption, secret parameters related to the irddiae
data being processed can leak as side-channel
information in the form of power dissipation,
electromagnetic radiation, or operating time. Among
them,two of the best known attacks are simple power
analysis (SPA)and differential power analysis
(DPA).Many important cryptosystems such as RSA and
DSA are based on arithmetic operations, such as
multiplications, modulo a large number. The claaisic
method of calculating a modular product involvestfi
multiplying the numbers as if they were and theirtg
the modulo of the result. However, modular reduci®
very expensive computationally—equivalent to dimgli
two numbers. The situation is even worse when the
algorithm requires modular exponentiation. Howetag,
performance of RSA processors with such
countermeasures has not been fully evaluated vique
work. This paper proposes a systematic design & RS
processors combining various datapath architectanes
exponentiation algorithms (i.e., sequences)
performance and resistance against side-chanmekaft
respectively. This systematic approach is dividetb i
four design stages: 1) algorithm design; 2)radigigie
3) architecture design; and 4) arithmetic-component
design. We first select a modular exponentiation
algorithm considering the tradeoff between the RSA
computation time and tamper resistance. We thestisel
the radix to determine the basic characteristicghef
processor, such as circuit area and operation éraxyu
(i.e., critical path). Finally, we adopt the datdpa
architecture and the arithmetic components to dp&m
the circuit performance.

High-Radix Montgomery Multiplier
A. Montgomery multiplication algorithm

for

ISSN: 2277-9655
Impact Factor: 1.852

Given two large integerX andY, the Montgomery
multiplication algorithm performs the following
operation:

whereR = 2k and the moduluN is an integer in the
range Ajl < N < 2nsuch that gcdg{,N) = 1.
For cryptographic applicationsy is usually a prime
number or a product of primes, and thus satisfies t
condition easily. In addition, thk-bit integersX, Y, R,
andN satisfy the following condition: 0X,Y < N <2k =
R.(2)
ALGORITHM 1 shows the original Montgomery
multiplication algorithm [1], which replaces a mdaiu
division byN with ak-bit right shift operation. Equation
(1) can This paper describes an algorithm and
architecture based on an extension of a scaladiz-2a
architecture proposed in a previous work. The algaor
is proven to be correct and the hardware design is
discussed in detail. Experimental results are shéavn
compare a radix-8 implementation with a radix-2igies
The scalable Montgomery multiplier is adjustable to
constrained areas yet being able to work on angngiv
precision of the operands. Similar to some systolic
implementations, this design avoid the high load on
signals that broadcast to several components, mdhki
delay independent of operand’s precision.
b) High-radix Word-based Montgomery Algorithm

The notation used throughout this text is shown
in Table 1. Figure 1 shows the Multiple-word High-
Radix (X) Montgomery Multiplication algorithm
(MWR2kMM), a generalization of the MM algorithm
presented in.A full-precision High-Radix Montgomery
algorithm has been presented BNand proven to beator
in [8]. To prove correctness of the algorithm imglrie 1
we show that it is equivalent to the one preseimt¢d].

M - modulus Tor modular multiplication;

X - multiplier operand for modular multiplication;
x; - a single bit of X at position j;

A;-a suw] radix-r digit of X at position j;

V- multiplicand operand for modular multiplication;
.\ number thn in the operands;
- Radiz (r =2*

. ‘- partial pr LJ['luet in the multiplication process;
e I - nurnber of bits per digit in radix r;
® gy, - coel fﬁumt that determines a multiple of ¥ which is added to the partial produet
S in the 3™ iteration of the computational loop;
® gy - coefficient that <ILLeriue~.= a multiple of the modulus M which is added to the
partial p1nL111e1 S in the _,r iteration of the r'umvltaLi@m\l loop;
e BPW 11:11111;{1 of bits in a word of either } or S;

« NW = [24 - number of words in either ¥, M or §;

e NS - num]fn of stages;
e S - carr\ save;
earr\ bits;
Lo Y Y gperand Y orepresented as multiple words;
bits k — 1 to 0 of the i*" word of S.

(1)
* S 10"

c¢) High-radix Montgomery Multiplier - System level
For high-precision computation it is beneficial
to divide the multiplicand Y , the modulus M anceth

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3214-3218]

[Prabha, 2(11): November, 2013]

result S into words [18]. The approach keeps thegya
and the wire delays inside reasonable boundarieth W
operands’ precision of thousands of bits, a corivaat
design to multiply all the bits at once would havhigh
number of pins, increased fan-in for the gatesh lygte
loads, and gate outputs driving long wires. The
multiplications (qY= Y)(x) and (qM* M)(x) shown in
the MWR2Kmm algorithm can be implemented by
multiplexers (MUXes) and adders. The shifting oiera

in Step 10 is simple in hardware. Additions candbee
using Carry- Save Adders (CSA), and keeping S in
redundant form. With this approach the carries tprd
during addition are not propagated but rather stamea
separate bit-vector along with a bit-vector for them
bits. The most complex operations of finding the
coefficients qY and qM (steps 3 and 5) can be eeecu
by table look-up. qY is pre-computed before the
computational cycle begins since it depends onlyhen
least significant k bits of X. This observation\ea the
computation of gM in the most critical part of the
algorithm as it is also pointed out by other aushdrhe
architecture of a Montgomery multiplier implemeigtin
the MWR2kMMalgorithm is shown in Fig. 3. There are
two main functional blocks: Kernel and 10. Only tthata
path is shown. The Kernel's data path is where the
computation takes place according to the algoritidm.
control block (not shown) supplies the signals to
synchronize the system.

stapaih coaticd_

I0Memoy
DATAPATH

Fig 2.0 System level diagram of modulator multiplier

Conclusion
Modular exponentiation architecture was
derived that combines a high radix version of

Montgomery’s algorithm with novel systolic array
architecture. The design was optimized for modern
FPGAs. For an optimal speed area trade—off a rafdb6

was chosen. We showed that it is possible to imptem
1024-bit modular exponentiation on a single
commercially available FPGA. 1024-bit RSA is
performed in 3.1 ms using a clock rate of 45.6 Mtz

an area of 6826 CLB’s on a Xilinx XC40250XV, speed
grade -09. These performances are better than all
previously reported implementations presented in

ISSN: 2277-9655
Impact Factor: 1.852

technical literature. As a result A total of 242afmths

for 1024-bitRSA processors were obtained for each
radix. We can reduce the RSA runtime up to 0.24Akss.

a result, the fastest design can perform the RSA
operation in less than 1.0 ms.

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3214-3218]

[Prabha, 2(11): November, 2013]

28 [j !
6 E""F"-"-"‘]- ,'E
- [adida tree ‘
24 |_| lan-CarBuon adder L
P

e ——————
® [aretn poinis |
O Cithers

-
—r—| Dk tree j | | |
Corry sebect -adder]

gl."".mu

| W73 coumder free 1

4 {Waneble-block carry-skip addey
v : i |

28 i - - I‘:m:I-:JI peovints [|
FT'5 PESU S S S & (thers
Speed |
4 Dackis tree Y IR R R R
22 Condittomal sum pdider e i .
20 |-t
i --| Balance
Dadda tree

T3 counter tree

[Vanable-block carry-skip adden

I 2 3 4 35

6 7T B 09

28 14 Speed
- Diadda free
26 1

I T w Parcto points
i | o Others

Dratapath area [Kgates]
=

Area
T 0T eounter tree
| Vanable-hlock carry=skip adder

Halance &2 !
(4:2) compressor fres : i I i
& | Carry select adder i i t i

1 2 3

4 5 6 T ® 9
Delay time [ns]

Datapath area [Kgates|

ISSN: 2277-9655
Impact Factor: 1.852

TABLE IV
PPA anD CPA ALGORITHMS

PPA algorithms

CPA algorithms

Array

Wallace trec
Balanced delay tree
Overtumed-stais ree
Dadda tree

(£;2) COMPIESSOr ree
(7,3) counter treg

Rippl: carry adder

Carry look-asheod ndder
Ripplz-block CLA

Block CLA

Rogge-Stone adder

Brent-Kung adder

Han-Carlson adder
Ladner-Fischer adder
Conditional sum adder

Carry select adder
Fixed-block-size carry-skip adder
Variable-block-size carry-skip adder

References
[1] P. Montgomery, “Modular multiplication
without trial division,” Mathematics of

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]T.

Computation, vol. 44, pp. 519-21, April 1985.

J. Vuillemin, P. Bertin, D. Roncin, M. Shand,
H. Touati, and P. Boucard, “Programmable
active memories: Reconfigurable systems come
of age,” IEEE Transactions on VLSI Systems,
vol. 4, pp. 56-69, Mar 1996.

M. Shand and J. Vuillemin, “Fast
implementations of RSA cryptography,” in
Proceedings 11th IEEE Symposium on
Computer Arithmetic, pp. 252-259, 1993.12

S. E. Eldridge and C. D. Walter, “Hardware
implementation of Montgomery’s modular
multiplication algorithm,” IEEE Transactions on
Computers, vol. 42, pp. 693-699, July 1993.
H.Orup, “Simplifying quotient determination in
high-radix ~ modular multiplication,” in
Proceedings 12th Symposium on Computer
Arithmetic, pp. 193-9, 1995.

P. Kornerup, “A systolic, linear-array multiplier
for a class of right-shift algorithms,” IEEE
Transactions on Computers, vol. 43, pp. 892-8,
August 1994,

C. K. Koc, T. Acar, and B. Kaliski, “Analyzing
and comparing Montgomery multiplication
algorithms,” IEEE Micro, vol. 16, pp. 26-33,
June 1996.

T. Blum and C. Paar, “Montgomery modular
exponentiation on reconfigurable hardware,” in
Proceedings 14th Symposium on Computer
Arithmetic, pp. 70-7, 1999.

Xilinx, Inc., San Jose, CA, The Programmable
Logic Data Book, 1996.

Blum, “Modular exponentiation on
reconfigurable hardware,” Master’s thesis, ECE
Dept., Worcester Polytechnic Institute,
Worcester, USA, May 1999.

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology

[3214-3218]

[Prabha, 2(11): November, 2013] ISSN: 2277-9655
Impact Factor: 1.852

[11]P. Alfke, “Xilinx M1 Timing Parameters.”
Electronic Mail Personal Correspondence,
December 1999.

[12]R. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signatures and
public key cryptosystems,” Communications of
the ACM, vol. 21, pp. 120-6, Feb. 1978.

[13]D. Knuth, The Art of Computer Programming.
Volume 2: Seminumerical Algorithms. Reading,
Massachusetts: Addison-Wesley, 2nd ed., 1981.

[14]J. Quisquater and C. Couvreur, “Fast
decipherment algorithm for RSA public—key
cryptosystem,” Electronics Letters, vol. 18, pp.
905-7, October 1982.

[15]E. D. Win, S. Mister, B. Preneel, and M.
Wiener, “On the performance of signature
schemes based on elliptic

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3214-3218]

